ONE-POT PHOTOCHEMICAL SYNTHESIS OF 4-ARYLNAPHTHO[2,3-d][1,3]DIOXEPIN-6,11-DIONE

Kazuhiro MARUYAMA, Masahiro TOJO, Kiyoshi MATSUMOTO; and Tetsuo OTSUKI Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606 and *Department of Chemistry, College of Liberal Arts and Science, Kyoto University, Kyoto 606

4-Arylnaphtho[2,3-d][1,3]dioxepin-6,11-dione was synthesized from 2-alkoxy-3-bromo-1,4-naphthoquinone and 1-aryl-1-trimethylsilyloxy-ethylene by a one-pot photochemical reaction.

In spite of the fascinating properties of [1,3]dioxepins as expected from those of diazepins, reports on [1,3]dioxepins have been rather sparse partly because of its synthetic difficulty. 1

Here we wish to report a one-pot photochemical synthesis of naphtho[2,3-d]-[1,3]dioxepin derivatives. These [1,3]dioxepin derivatives have never been Typically, 2-bromo-3-methoxy-1,4-naphthoquinone la (0.2 mmol) reported so far. and 1-phenyl-1-trimethylsilyloxyethylene 2a (1.0 mmol) were dissolved in benzene (20 ml) and irradiated by a high pressure Hg lamp(300 W) for several hours.² After the complete consumption of La, chromatography of the reaction mixture gave two discrete photo-products, 3a and 4a, in a total yield of 40%(3a/4a=3/1) (see One of them, 3a, was 2-benzoylmethyl-3-methoxy-1,4-naphthoquinone (yellow prisms, mp 146-148°C). The other product, 4a, which was confirmed to be derived from 3a upon further irradiation, was red needles, mp 168-169°C. 13 C-NMR (CDCl₂): δ ;94.0ppm, NMR(CDCl₂): δ ; 5.75ppm(2H,s), 6.91(1H,s), 7.4-8.3(9H,m). 95.0, 123.6, 125.6, 126.3, 126.7, 128.5, 130.0, 131.3, 131.6, 133.8, 134.3, 155.5, 163.1, 178.0, 183.5. IR(KBr):1660, 1580, 1560cm⁻¹. UVmax(EtOH):307nm(logε:4.36), 462(3.74). These spectral data were all compatible with the [1,3]dioxepin, 4a, which was further confirmed by the following derivations (see Scheme 2).8

Other 2-alkoxy-3-bromo-1,4-naphthoquinone and 1-aryl-1-trimethylsilyloxy-ethylene can also serve as the starting materials for this photochemical reaction as illustrated in Scheme I (yields are shown in Table I). Thus, the photochemical reaction of 2-alkoxy-3-bromo-1,4-naphthoquinone with 1-aryl-1-trimethyl-

(a)
$$Zn/Ac_20$$
, Δ , Ih .
(b) (i) $H_2/Pd/Et0H$, rt , $6h$. (ii) O_2 .
(Scheme 2) (b) (b) O_2 (b) O_2 (c) O_2 (b) O_2 (c) O_2 (c) O_2 (c) O_2 (scheme 2)

Table 1. Yields of Photo-Products a

Starting Materials.		2-Alkoxy-3-(2-aryl-2-oxoethyl)-	4-Arylnaphtho[2,3-d][1,3]di-
Quinone	Silyloxyethylene	1,4-naphthoquinone (mp, °C)	oxepin-6,11-dione (mp, °C)
la la lb lb	2 ,20,20,20,20,20,20,20,20,20,20,20,20,20,	3a (146-148), 28% 3b (133-134), 22% 3c (90-93), 20% 3d (105-106), 21% 3e (127-128), 23% 3f (98-100), 21%	4a (168-169), 12% 4b (203-204), 16% 4c (203-204), 12% 4d (204-205), 20% 4e (189-190), 21% 4f (160-161), 17%

a) Yields were calculated on the basis of the quinone consumed after irradiation for 10 h.

silyloxyethylene provides us a new and feasible one-pot synthetic route to 4-aryl-naphtho[2,3-d][1,3]dioxepin derivatives.

References and Notes.

- 1) J.F.Keana and R.H.Morse, Tetrahedron Lett., (1976) 2113.
- 2) Addition of pyridine (equimolar to la) was helpful to keep the reacting mixture clean.
- 3) The relative amounts of two products were dependent upon the reaction time. The maximum yield of 4a (24%) was achieved upon further irradiation at the expense of 3a (the yields in the text were calculated after irradiation for 10 h).
- 4) Purification of the products was best accomplished by column chromatography on silica gel using benzene-ether as solvent system. Lower yields of the isolated products were due to the formation of resinous matters.
- 5) The structure 3a was confirmed by the independent synthesis: by methylation of 2-benzoylmethyl-3-hydroxy-1,4-naphthoquinone 7, which is derived from 2-hydroxy-1,4-naphthoquinone and phenylacetaldehyde. a) M.G.Ettlinger, J.Am.Chem.Soc., 72, 3666 (1950). b) R.Hout and P.Brassard, Can.J.Chem., 52, 88 (1974).
 - c) S.C.Hooker, J.Am.Chem.Soc., <u>58</u>, 1163 (1936).
- 6) Upon irradiation, $\stackrel{3a-f}{\sim}$ gave the corresponding dioxepin derivatives $\stackrel{4a-f}{\sim}$ in yields of 40-80%.
- 7) The proposed structure is compatible with both MS and analysis data.
- 8) The structures of the reaction products, 5, 6, and 7, are compatible with NMR, IR, UV, MS, and analysis data.

(Received May 10, 1980)